Lower Bounds on Communication Complexity ∗

نویسنده

  • Stasys P. Jukna
چکیده

A notion of ”communication complexity” is used to formally measure the degree to which a Boolean function is ”global”. An explicit combinatorial lower bound for this complexity measure is presented. In particular, this leads to an exp(Ω( √ n)) lower bound on the complexity of depth-restricted contact schemes computing some natural Boolean functions in NP.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower Bounds in Communication Complexity: A Survey

We survey lower bounds in communication complexity. Our focus is on lower bounds that work by first representing the communication complexity measure in Euclidean space. That is to say, the first step in these lower bound techniques is to find a geometric complexity measure such as rank, or the trace norm that serves as a lower bound to the underlying communication complexity measure. Lower bou...

متن کامل

Lower Bounds for One-way Probabilistic Communication Complexity

We prove three diierent types of complexity lower bounds for the one-way unbounded-error and bounded-error error probabilistic communication protocols for boolean functions. The lower bounds are proved in terms of the deterministic communication complexity of functions and in terms of the notion \probabilistic communication characteristic" that we deene. We present boolean functions with the di...

متن کامل

Lower Bounds in Communication Complexity

The communication complexity of a function f(x, y) measures the number of bits that two players, one who knows x and the other who knows y, must exchange to determine the value f(x, y). Communication complexity is a fundamental measure of complexity of functions. Lower bounds on this measure lead to lower bounds on many other measures of computational complexity. This monograph survey lower bou...

متن کامل

Lower Bounds for Quantum Communication Complexity

We prove new lower bounds for bounded error quantum communication complexity. Our methods are based on the Fourier transform of the considered functions. First we generalize a method for proving classical communication complexity lower bounds developed by Raz [30] to the quantum case. Applying this method we give an exponential separation between bounded error quantum communication complexity a...

متن کامل

Complexity and its Application to Lower Bounds on Branching Program

Multiparty communication complexity was first defined by Chandra, Furst, and Lipton [6] and used to obtain lower bounds on branching programs. Since then it has been used to get additional lower bounds and tradeoffs for branching programs [1, 3], lower bounds on problems in data structures [3], time-space tradeoffs for restricted Turing machines [1], and unconditional pseudorandom generators fo...

متن کامل

Multiparty Communication Complexity and Threshold Circuit Size of sfAC0

We prove an nΩ(1)/4k lower bound on the randomized k-party communication complexity of depth 4 AC0 functions in the number-on-forehead (NOF) model for up to Θ(log n) players. These are the first nontrivial lower bounds for general NOF multiparty communication complexity for any AC0 function for ω(log logn) players. For nonconstant k the bounds are larger than all previous lower bounds for any A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1987